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A unit of electrical char

volt.

COULOMB [C]

e equal to one amp second,
the charge on 6.21x10" electrons, or one joule per

COMPLEX NOTATION

ael® = (abb)

where b may be in radians or degrees (if noted).

COMPLEX CONJUGATES

The complex conjugate of a number is simply that
number with the sign changed on the imaginary part.
This applies to both rectangular and polar notation.
When conjugates are multiplied, the result is a scalar.

(a+ jb)(a- jb)=a?+b?
(ABPB°)(AD - B°) = A?
Other properties of conjugates:
(ABC+DE+F)*=(A*B*C*+D*E* +F¥*)
(e— B )* - e+jB
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TRANSMISSION LINES

G. REFLECTION COEFFICIENT [V/V]

The reflection coefficient is a value from -1 to +1
which, when multiplied by the wave voltage,
determines the amount of voltage reflected at one
end of the transmission line.

ZO

i Z - +
G =re” =—~—C%|and ZLIZOﬂ
Z, +2, 1- G

where: Z, is the load impedance

G isthe load reflection coefficient
I isthe reflection coefficient magnitude
Yy is the reflection coefficient phase

L
Z,= E is the characteristic impedance

SHORT-CIRCUIT IMPEDANCE [W]

Z, = jz,tan(bl)

where: Z, is the characteristic impedance
2
b=w/LC = I_p is the phase constant

| is the length of the line [m]

THE COMPLEX WAVE EQUATION

The complex wave equation is applicable when the
excitation is sinusoidal and the circuit is under steady
state conditions.

dV(@) _ .
. bV (2)

2
where b =wy/L =I—p is the phase constant

The complex wave equation above is a second-order
ordinary differential equation commonly found in the
analysis of physical systems. The general solution is:

V(z)=V' e +v-e'l”

where e ? and " represent wave propagation
in the +z and —z directions respectively.
The same equation applies to current:
I (Z) - I +e— jbz + I —e+jbz
and
V+e— JbZ +V- e+ij
ZO

where Z, =+/L/C is the characteristic impedance

of the line. These equations represent the voltage
and current phasors.

1(2) =

CONSTANTS

Avogadro’s number
[molecules/mole]

Boltzmann’s constant

Elementary charge
Electron mass
Permittivity of free space
Permeability constant

Planck’s constant

Rydberg constant
kT @ room temperature

Speed of light
1 A (angstrom)

N, =6.02" 10%
k=1.38"10* JK

=8.62" 10° ev/K
=160 10" c
m, =9.11° 10"* kg
g, =8.85" 10" Fim
m,=4p” 10" H/m
h=6.63"10* Js
=4.14" 10" cv-s
R =109,678 cm™
KT =0.0259 ev

c=2.998" 10® mis
108cm=10"m

1 mm (micron) 10 cm
1nm=10A=10" cm
1eV=1.6x%x10"J
1v=1JC 1IN/C=1V/m 1J=1Nm=1
C Vv
| WAVELENGTH [m]
Vv V,, = velocity of propagation (2.998x10° m/s

| =—* for a line in air)
f f = frequency [HZz]
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Y4a-WAVELENGTH INLINE MATCHING
TRANSFORMER - resistive load

For use with a purely resistive load that does not match the
line impedance. The load is matched to the line by
inserting a ¥s-wavelength segment having a characteristic
impedance Zo,.

1A
) Zq Al

Zy = characteristic impedance of the
transmission line [W]
= wavelength [meters]
Loy =Z,R R. = resistance of the load [W]
Zg = characteristic impedance of the
Yawave matching segment [W]

X REACTANCE W

Xc = reactance [W]
- X, = reactance [W]

e =1

w = frequency [radiang]
X, = jwL C = capacitance [F]

L = inductance [H]

Y4a-WAVELENGTH INLINE MATCHING
TRANSFORMER - reactive load

For use with a reactive load. The load is matched to the
line by inserting a Y2-wavelength segment having a
characteristic impedance Z, at a distance | from the load. |
is the length of transmission line required to produce the
first voltage maximum—closest to the load. If the load is
inductive, the first voltage maximum will be closer than the
first voltage minimum, i.e. within Y2wavelength.

| [A—r— |
Z 2 Zp 2z, ||z

First find the reflection coefficient in order to determine the
value of y. Then find the length | of the line that will
convert the load to a pure resistance, i.e. produces the first
voltage maximum. Find this resistance (Z) using the line
impedance formula. Then determine the impedance Zg of
the Ya-wavelength segment that will match the load to the
line.

G is the load reflection

coefficient
G = rev = Z -2, y = phase of the reflection
coefficient [radians
Z +Z, [ ]

= magnitude of the
reflection coefficient [W]
Zy = characteristic

i.e. G =rby (radians)

= Yy = ﬂ impedance [W]
2b  4p b=2p/l
] | = vy /f wavelength [m]
7 = ZL + JZo tanbl Z» = impedance (resistive)

of the load combined

with the | segment [W]
Zg = line impedance of the

Ys-wave matching

segment [W]

"0z +jz, tanbl

Z, =122,

Zi, LINE IMPEDANCE [W

| = distance from load [m]

__ Z, +jzZ,tanbl] i=+-1
in = %0 - b = phase constant
ZO + JZL tanbl Zy = characteristic
impedance [W]
Z, = load impedance [W]

The line impedance of a Y2-wavelength line is the inverse
of the load impedance.

Impedance is a real value when its magnitude is
maximum or minimum.

1471 Zy = characteristic
Z o =2,S=2,— impedance [W]
1-r S = standing wave ratio
Z 1-r I = magnitude of the
Z. ="2=Z reflection coefficient
S +r
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SMITH CHARTS

First normalize the load impedance by dividing by the
characteristic impedance, and find this point on the chart.
An inductive load will be located on the top half of the
chart, a capacitive load on the bottom half.

Draw a straight line from the center of the chart through
the normalized load impedance point to the edge of the
chart.

Anchor a compass at the center of the chart and draw an
arc through the normalized load impedance point. Points
along this arc represent the normalized impedance at
various points along the transmission line. Clockwise
movement along the arc represents movement from the
load toward the source with one full revolution representing
1/2 wavelength as marked on the outer circle. The two
points where the arc intersects the horizontal axis are the
voltage maxima (right) and the voltage minima (left).

Points opposite the impedance (180° around the arc) are
admittance. The reason admittance is useful is because
admittances in parallel are simply added.

C;(Z) - qejzbz

Z = distance from load

: [(m]
e'®” =1b2bz j=+-1
Z(2)-1 = magnitude of the
32 = 2(2)-1 reflection coefficient
Z(2)+1 b = phase constant

G-1 7 Z, G = reflection coefficient

L -— Z = normalized
G +1 Z,

impedance [W]

SINGLE-STUB TUNING
The basic ideais to connect a line stub in parallel
(shunt) or series a distance d from the load so
that the imaginary part of the load impedance will
be canceled.

Shunt-stub: Select d
so that the
admittance Y looking
toward the load from
a distance dis of the
form Yo +jB. Then
the stub
susceptance is
chosen as B,
resulting in a
matched condition.

FINDING A STUB LENGTH

Example: Find the lengths of open and shorted shunt
stubs to match an admittance of 1-j0.5. The admittance
of an open shunt (zero length) is Y=0; this point is
located at the left end of the Smith Chart x-axis. We
proceed clockwise around the Smith chart, i.e. away
from the end of the stub, to the +j0.5 arc (the value
needed to match —j0.5). The difference in the starting
point and the end point on the wavelength scale is the
length of the stub in wavelengths. The length of a
shorted-type stub is found in the same manner but
with the starting point at Y=¥.

Open stub of j5

length .074 | d generat

matches an Towar or
admittance /l 2 A2 13 414\_1\
of 1-j.5 ® - .

Admittance
(short)

Admittance®
(open)
Y=0

Shorted stub of
length .324 |
matches an
admittance

of 1-j.5

In this example, all values were in units of admittance.
If we were interested in finding a stub length for a
series stub problem, the units would be in impedance.
The problem would be worked in exactly the same way.
Of course in impedance, an open shunt (zero length)
would have the value Z=¥, representing a point at the

right end of the x-axis.

14 . -
66" gfo & o8 ©

SWR STANDING WAVE RATIO [V/V]

Mg e _ 257
V| 1-r

SWR =

min | |min

Series-stub: Select d
so that the admittance
Z looking toward the
load from a distance d
is of the form Z + jX.
Then the stub
susceptance is chosen
as -jX, resulting in a
matched condition.
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P(2 TIME-AVERAGE POWER ON A
LOSSLESS TRANSMISSION LINE [W]

Equal to the power delivered to the load. The power
delivered to the load is maximized under matched
conditions, i.e. r = 0, otherwise part of the power is
reflected back to the source. To calculate power, it
may be simpler to find the input impedance and use
P=1°RorP=IV.

V" = the voltage of the
forward-traveling

o)

P(2) = wave [V]
220 Zy = characteristic
impedance [W]
P(z2) == {V(Z) [l (Z)] } I = magnitude of the

reflection coefficient
% = "the real part"

POWER USING PHASOR NOTATION [W]

1 S= power [W]
==VI* V = volts [V]
2 I* = complex conjugate of current [A]

V" FORWARD-TRAVELING WAVE
- ZinVO

2. 2" frGe ™)
V' = the voltage of the forward- b = phase constant

traveling wave [V] | = length of the line [m]

Vo = source voltage [V] G = load reflection
Z;, = input impedance [W] coefficient
Zs = source impedance [W]

+

E ELECTRIC FIELD

E, = electric field at point
p due to a charge Q
or charge density r

1 & [V/m]
=—a Qk dE = an increment of
Ap& iz |r - rk‘lf electric field [V/m]
Q = electric charge [C]
dE = 1 R ( (9 de € = permittivity of fr_elg
4pe, I‘ _ r(FZ |S:5)ace 8.85x 10
m

I’-I’(F2

~ 4pe,

L g 9 g

r = charge density;
charge per unit
length* [C/m]

Electric field from a potential:

refer to the NABLA notes on

page 8.

*NOTE: The | symbols could
be replaced by a symbol for
area or volume. See Working

With ... on page 9.

dlI' = a small segment of
line I*

R = unit vector pointing
fromr'tor ,i.e.in
the direction of r - r'.

r' = vector location of the

source charge in
relation to the origin

r = vector location of
the point at which
the value of E, is
observed

N = Del, Grad, or Nabla
operator

ELECTROSTATICS

F ELECTROSTATIC FORCE

1 (r-ry) 1
Fp, = QQ -
1 4pe, 1 2| i r1| 4pe,

F1, = the force exerted by charge Qi on Q. [N]
r, = vector from the origin to Q;
I, = vector from the origin to Q..

When finding the force on one charge due to multiple
charges, the result can be found by summing the
effects of each charge separately or by converting the
multiple charges to a single equivalent charge and
solving as a 2-charge problem.

=9" 10°

F ELECTROSTATIC POTENTIAL [V]

1 8 Q
F k
4pe091|r-rkﬂr
dF = 1 rd¢
4pe0|r-r¢

d¢
4pe0 qr - rl’F

Potential due to an
electric field:

F o =- QEd!

To evaluate voltage at
all points.

F(r)=- QEd

*NOTE: The | symbols
could be replaced by a
symbol for area or
volume. See Working
With ... on page 9.

F = the potential [V]

dF = an increment of potential
[VI]

F a0 = the potential difference
between points a and b [V]

E = electric field

dlI' = a small segment of line I*

dl = the differential vector
displacement along the
path from ato b

& = permittivity of free space
8.85 x 10™ F/m

Q = electric charge [C]

r, = charge density along a
line* [C/m]

r' = vector location of source
charge Q

r' = vector location of the
source charge in relation
to the origin

r = vector location of
electrostatic potential F
in relation to the origin
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MAXWELL'S EQUATIONS GAUSS'S LAW

Maxwell's equations govern the principles of guiding The net flux passing through a surface enclosing a charge
and propagation of electromagnetic energy and is equal to the charge. Careful, what this first integral really
provide the foundations of all electromagnetic means is the surface area multiplied by the perpendicular

phenomena and their applications. electric field. There may not be any integration involved.

= N\
S oo E-ds= »D-ds= Ar dv=
N & = _Et Faraday's Law Qeo Qenc Q) ds= Qr av = Qe
1 & = permittivity of free space 8.85 x 10™ F/m
S~ — E = electric field [V/m]
ND =T Gauss' Law D = electric flux density vector [C/m?]
— ds = a small increment of surface S
~, - - o _ .
N %7 = 7 +—— Ampere's Law* = volume charge density [C/m”]
qt dv = a small increment of volume V
- Qenc = total electric charge enclosed by the Gaussian
NB =0 no name law, where: surface [
& = electric field [V/m] The differential version of Gauss's law is:
»B = ic fi = .
B .magnetlc field [T] N-D=r or dIV(eo -E) =r
t =time[s]

= electric flux density [C/m?]

= volume charge density [C/m°] '
~# = magnetic field intensity [A/m] GAUSS'S LAW —an example problem

_7 = current density [A/m?] Find the intensity of the electric field at distance r from a
straight conductor having a voltage V.

*Maxwell added the 1< term to Ampere's Law. ] o .
it Consider a cylindrical surface of length | and radius r

enclosing a portion of the conductor. The electric field
passes through the curved surface of the cylinder but not

POISSON'S EQUATION the ends. Gauss's law says that the electric flux passing

through this curved surface is equal to the charge enclosed.

~ r
N°F =- — N 2p
€ @eOE-ds:eOQ Elrdf =Q,.=r,|=CVI
2p R\
r« SURFACE CHARGE DENSITY [C/n?] so &GETQ df =CV and B = 2per
— & = permittivity of free space 8.85 x 10° Q)
r s — eo En 12 Brm E; = electric field at distance r from the conductor [V/m]
R E, = electric field normal to the | = length [m] ,
E,=nE surface [V/m] r df = a small increment of the cylindrical surface S[m?]
r, = charge density per unit length [C/m]
C, = capacitance per unit length [F/m]
D FLUX DENSITY [C/n] V = voltage on the line [V]
or ELECTRIC DISPLACEMENT PER UNIT AREA
Do Q Q = electric charge [C] CONSERVATIVE FIELD LAW
4pr2 e = dielectric constant € = €,€, N "E=0 . _
D=eE E = electric field [V/m] = gd =0

E = electric field [V/m]

ds = a small increment of length
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COULOMB'S LAW
N-D=r @)-ds: Or dv

D = electric flux density vector [C/m?]
I = volume charge density [C/ms]
ds = a small increment of surface S

W, POTENTIAL ENERGY [J]

The energy required to bring charge g from infinity to
a distance R from charge Q.

w,=qF =%
4peR

_1. _1.
We‘EQrF dv—EQD-Edv

F = the potential between g and Q [V]
0,Q = electric charges [C]

e = permittivity of the material

R = distance [m]

I = volume charge density [C/ms]

E = electric field [V/m]

D = electric flux density vector [C/m?]

C CAPACITANCE BETWEEN TWO
PARALLEL SOLID CYLINDRICAL
CONDUCTORS

This also applies to a single conductor above ground,
where the height above ground is d/2.
C = capacitance
__ pe [F/m]
|n(d/a) ,where d>a ¢-= permittivity of
the material
d = separation
C= pe 5 (center-to-
i center) [m]
cosh T a = conductor

2a radius [m]

or

C CAPACITANCE BETWEEN PARALLEL
PLATES

C = capacitance [F]
C= EA\ € = permittivity of the material
d

d = separation of the plates [m]
A = area of one plate [m?]

W. VOLUME ENERGY DENSITY [Jm
for the Electrostatic Field

we:ED-E:}eE2
2 2

F = the potential between g and Q [V]
e = permittivity of the material

R = distance [m]

E = electric field [V/m]

D = electric flux density vector [C/m?]

C CAPACITANCE BETWEEN COAXIAL
CYLINDERS

C = capacitance [F/m]

e = permittivity of the material

= ﬂ b = radius of the outer cylinder
In(b/a) [m]

a = radius of the inner cylinder
[m]

CAPACITANCE
C CAPACITANCE [F
Q Q = total electric charge [C]
C :E F = the potential between g and Q[V]
C, = capacitance per unit length [F/m]
(o =N r, = charge density per unit length [C/m]
\

V = voltage on the line [V]

C CAPACITANCE OF CONCENTRIC
SPHERES
C = capacitance [F/m]
C= 4pGib e = permittivity of the material
b- a b = radius of the outer sphere [m]
a = radius of the inner sphere [m]

J CURRENT DENSITY

The amount of current flowing perpendicularly
through a unit area [A/nY]

J=sE S = conductivity of the material [S/m]
E = electric field [V/m]
| = @].ds | = current [A]
ds = a small increment of surface S
In . N. = the number of conduction band
semlc_onductor electrons
material: Qe = electron charge -1.602x10™° C
J=n.0.V, Vg4 = a small increment of surface S
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CONTINUITY EQUATION
NJ +1-[_r =
It

J = current density [A/m?] J = SE
= volume charge density [C/m?]

MATHEMATICS

DUALITY RELATIONSHIP of J and D

RESISTANCE, CAPACITANCE, CURRENT,
CONDUCTIVITY

Where current enters and leaves a conducting
medium via two perfect conductors (electrodes) we

have:
< N S . sQ
| = ds= ds=— ds=—=
Q] ds s@Eds e@)ds o
J = current density [A/m?] J =SE
E = electric field [V/m]
D = electric flux density vector [C/m?] D = eE
As a result of this, we have the following relation,
useful in finding the resistance between two
conductors:
R = resistance [W]
C = capacitance [F]
S e = permittivity of the material
= conductivity of the material [S/m]

WORKING WITH LINES, SURFACES, AND
VOLUMES

ri(r') means "the charge density along line | as a
function of r'." This might be a value in C/m or it
could be a function. Similarly, rr") would be the
charge density of a surface and r (r') is the
charge density of a volume.

For example, a disk of radius a having a uniform
charge density of r C/m? would have a total
charge of r pa?, but to find its influence on points
along the central axis we might consider
incremental rings of the charged surface as
ro(r') dr'=rg2pr' dr'.

If dI' refers to an incremental distance along a circular
contour C, the expression is r'df , where r' is the
radius and df is the incremental angle.

GEOMETRY
SPHERE ELLIPSE
Area A=4pr? Area A=pAB
Circumference

2 2
L»2p la wZLb

Volume V = g pr?

G CONDUCTANCE [W]

1 | R = resistance [W]
GZ_RZE | = current [A]
DF = voltage potential [V]
S¢f-ds = conductivity of the material
Sl [S/m]
c‘) Edl

s SEMICONDUCTOR CONDUCTIVITY
1
W]
= conductivity of the material
[S/m]G = conductance [W ]
= electron charge -1.602x10™° C
s»|qmN, 97°
MmNy m = electron mobility [m?/(V-s)]
Ng4 = concentration of donors, and
thereby the electron concentration
in the transition region [m?]

N NABLA, DEL OR GRAD OPERATOR
[+ m]

Compare the N operation to taking the time
derivative. Where 1/t means to take the derivative
with respect to time and introduces a s* component to
the units of the result, the N operation means to take
the derivative with respect to distance (in 3
dimensions) and introduces a m™ component to the
units of the result. N terms may be called space
derivatives and an equation which contains the N
operator may be called a vector differential
equation. In other words NA is how fast A changes
as you move through space.

in rectangular fa=zTA, A STA

coordinates: X yﬂy 1z

in cylindrical <. _~TJA ~19A TA
coordinates: NA = rﬁ + T + ZE

in spherical - ~JA ~19A -~ 1 A
coo?dinates: NA:ro_r+ 711}_q+f rsinqg_f
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N? THE LAPLACIAN [+ m?] Nx CURL [+m?]

in rectangular [32A = ?NZAK +9N2A/ +2N2AZ =0 The circulation around an enclosed area. The curl of
coordinates: ) ) ) vector B is
Kj2 o ﬂ_ +ﬂ_ +ﬂ_ - in rectanguINar coordinates:
™ Ty 1z cul B=N"B=

in s_phe_rical and N2A © N(N-A)- N N A AaaTB 1B, O adTB 1B, O 8dTB ﬂB 6
cylindrical _ ad(d' A) I( | A) X .
coordinates: = grad{div A J- curiicur e ‘Hy Tz ¢ z 8112 X z e ™ g
for example, the ~ 2 2 2 . _ ]
Laplacian%f oo, K2E =7 E Ml E Ml E -0 in cylindrical coordinates:
static potential: x> Ty 1z curl B=N"B=

- - ; ELTB, jﬁtu+f 1B TB,u, Z ’(ra)_ 1B, ¢

N- DIVERGENCE [+m] r % qzH i 8ﬂz I H e qr qf Q

The del operator followed by the dot product operator
is read as "the divergence of" and is an operation

performed on a vector. In rectangular coordinates, Nx in spherical coordinates:

means the sum of the partial derivatives of the . A 1 Q‘H(Bf Sinq) B u
magnitudes in the X, y, and z directions with respect to cul B=N"B=r —é - 0+
the x, y, and z variables. The result is a scalar, and a rsngag g 1t g

factor of m™ is contributed to the units of the result.

~ e ~1é
1€1 98 ﬂ(ra)u c1€1(8,) 1B, !

For example, in this form of Gauss' law, where D is a q— J
density per unit area, N>D becomes a density per unit r gsing ff g refr ﬂq a
volume. The divergence of a curl is always zero:
_ ~ D. 9D D N{N"H)=0
dIVD:NXD:ﬂ 10, 1 2=y ( )
ix Ty 19z
D = electric flux density vector D = eE [C/m?] DOT PRODUCT [= Unitsz]
r = source charge density [C/m°] The dot product is a scalar value.
In the electrostatic context, the divergence of D is the A-B= (XA‘ YA, +ZAZ)°(XB* Y8, +ZBZ)= AB+AB, +AB,
total outward flux per unit volume due to a source AeB = |A||B| cosy B
charae. The diveraence of vector D is: he 1 A
inrectangular . 1D, 9D Xey=0, Xex=1 y |
coordinates: divD=——*+—_—L+ -2 ¥ N YA i |
> T 1z B-y:(xBX+yBy+zBZ *y =B, .AB
in cylindrical 19 11D, 1D, Projectionof B !
i - dvD==— e along a: NG |
coordinates: r A ( r) rqf 1z g | }
¢33 |
in spherical coordinates: (B a)a | y a |
divD =1 'ﬂ(l’ D ) 1 9(sn qu)+ 1 95 The dot product of 90° vectors is zero.
r2 qr rsing 19 rsnq If The dot product is commutative and distributive:
A+B=B+A A+(B+C)=A+*B+A-C
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CROSS PRODUCT

A" B=(xA +yA +2A) (xB, + 9B, +28B,)

=3(AB,- AB,)+9(AB,- AB,)+2(AB,- AB,)
A" B =AlA|Blsny . AxB

where N is the unit vector normal to il
both A and B (thumb of right-hand rule). A

B"A=-A"B

X'y=z y x=-z x x=0
f z=r f'r=-z

The cross product is distributive:

A" (B+C)=A"B+A"C

Also, we have:

A" (B C)=(AxC)B- (AB)C

COORDINATE SYSTEMS
Cartesian or Rectangular Coordinates:
r(x,y,2 =xx+y+2z

rl=x2+y?+2*

Spherical Coordinates:

X is a unit vector

P(r,q,f) ris distance from center

q is angle from vertical
f is the CCW angle from the x-axis

r, 6| and f are unit vectores and are functions of

position—their orientation depends on where they
are located.

Cylindrical Coordinates:
C(r,f,z) risdistance from the vertical (2) axis

f is the CCW angle from the x-axis
zis the vertical distance from origin

COORDINATE TRANSFORMATIONS
Rectangular to Cylindrical:

To obtain: A(r,f,2) =FA +fA +2A

A = x> +y? i = Xcosf + ysinf

f=tantY f =- %sinf + ycosf
X

z=2z z2=2

Cylindrical to Rectangular:
To obtain: r(X,y, 2) = XX+ yy+ 2z

X = r cosf X=r cosf - f cosf
y=rsanf f =rsinf + ycosf
z=z 7z2=7

Rectangular to Spherical:
To obtain: A(r,q,f) =rA +(AJA1 +fAA
A = ry ez
f = Xsingcosf + ysingsinf + Zcosq
zcos*t
X2+ yP+ 72
q = kcosqcosf + ycosqsinf - 2sing
ay

X
Spherical to Rectangular:

To obtain: r(X,y, 2) = XX+ yy+ 2z

f =tan f =- %sinf + ycosf

X =r gnqcosf

%=fsinqcosf - qcosqcosf - f sinf
y=rdanqgsnf

y=fsingsinf +qcosqgsinf +f cosf
Z=rcosq 2=fcosq- gsing
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THE STATIC MAGNETIC FIELD

F Fi, MAGNETIC FORCE [N/m]

due to a conductor
If the current in the two wires travels in opposite
directions, the force will be attractive.
F1, = the force exerted by conductor 1
carrying current | on conductor 2.

_xmylLl, [N/m]
2~ = bility constant 4px10~
2nd my = permeability p
P [H/m]
| = current [A]

d = distance between conductors [m]

B MAGNETIC FIELD [T or A/m]

due to an infinite straight conductor
May also be applied to the magnetic field close to a
conductor of finite length.

Bp = magnetic field vector [T]
R m)l m = permeability constant 4px10™ [H/m]
B, =f —=— I =curent[A]
2pr I = perpendicular distance from the
conductor [m]

Bpr BIOT-SAVART LAW
Determines the B field vector at any point P identified
by the position vector r, due to a differential current
element | d' located at vector r'.

~ Bp = magnetic field vector
_ml d"R [T]

My = permeability constant

P 2
4pR 4px107 [H/m]
—ml . d” (r - r') | di' = current element [A]
P 4p @ |I’ _ r.|3 R = unit vector pointing
from the current
. ror element to point P
R = R = distance between the
|I’ - I"| current element and

point P [m]

B MAGNETIC FIELD [T]
due to afinite straight conductor at a point
perpendicular to the midpoint
B —fA mla Bp = magnetic field vector [T]
P T T My = permeability constant
2pr r’+a’ 4px107 [H/m]
| = current [A]
a = half the length of the
conductor [m]

| I = perpendicular distance
from the conductor [m]

a

B MAGNETIC FIELD [T]
at the center of a circular wire of N turns
B = magnetic field [T]
myNI m = permeability const. 4px10” [H/m]
o« = 7 N = number of turns of the coil
2a | = current [A]
a = radius [m]

B

B AMPERE'S CIRCUITAL LAW
Ampere's law is a consequence of the Biot-Savart
law and serves the same purpose as Gauss's law.
Ampere's law states that the line integral of B around
any closed contour is equal to ny times the total net
current | passing through the surface Senclosed by
the contour C. This law is useful in solving
magnetostatic problems having some degree of
symmetry.

B = magnetic field vector, equal to
B times the appropriate unit
vector [T]

< N m = permeability constant 4px10~

QB-dI = Qm)J ds [H/m]

_ dl = an increment of the line which

- mJI is the perimeter of contour C

(m]
J = current density [A/m?] J =sE
ds = an increment of surface [mz]

B MAGNETIC FIELD [T]
along the central axis of a solenoid

B(z):im)ng (z+112)  (z-12) U
2 glaz+(z+1/2F (a2 +(z- 112§

and at the center of the coil: B, » 2m1_|\ll

ctr

B = magnetic field [T] | = length of the solenoid [M]

my = permeability constant ~ z = distance from center of
4px107 [H/m] the coil [m]

N = number of turns a = coil radius [m]

| = current [A]
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H MAGNETIC FIELD INTENSITY [A/m]
The magnetic field intensity vector is directly
analogous to the electric flux density vector D in
electrostatics in that both D and H are medium-
independent and are directly related to their sources.

B H = magnetic field [A/m]
He —- M B = magnetic field vector [T]
m, m = permeability const. 4px10” [H/m]
. 1D M = magnetization [A/m]
N° H=J+— J=current density [A/m? J=sE
D = electric flux density vector
[C/m?]

Ly SELF-INDUCTANCE [H]

When a current in coil 1 induces a current in coil 2,
the induced current in coil 2 induces a current back in
coil 1. This is self-inductance.
NlL u N = number of turns of the coil
=——— L1 =the total flux linked by a single
|1 turn of coil 1 [Wh]
2 [1 = current in coil 1 [A]
— Nl Yll :
=———= Yy =the magnetic flux produced by
l a single turn of coil 1 and linked
by a single turn of coil 1 [Wb]

Lll

Y, L (lambda) MAGNETIC FLUX, LINKAGE

Flux linkage L is the ability of a closed circuit to store
magnetic energy. It depends, in part, on the
physical layout of the conductors. It is the total
magnetic field due to circuit #1 passing through the
area enclosed by the conductors of circuit #2. The
text seemed to describe Y as the flux due to one turn
and L as the flux due to all of the turns of the coil, but
was not consistent so be careful.

Y 12 = the magnetic flux passing

Y..=AB.-ds through coil 2 that is produced
© Q 12 by a current in coil 1 [Wh]
L,=N,Y, L = total flux linkage [Wh]

. B = magnetic field vector [T]
L=N @'ds N = number of turns of the coil
ds = an increment of surface [mz]

L1, MUTUAL INDUCTANCE [H]
The mutual inductance between two coils.
N = number of turns of
L, = Nl 5 = NN Yo, the coil
L = flux linkage [Wh]
. | = current [A]
Neumann formula: i
Y = magnetic flux [Wh]
— mN,N, - dl,dl, r = vector to the point
4p A |r - r'| of observation
r' = vector to source

Il Il

12

LENZ'S LAW

Induced voltage causes current to flow in the direction
that produces a magnetic flux which opposes the flux
that induced the voltage in the first place. This law is
useful in checking or determining the sign or polarity
of a result.

W, MAGNETIC ENERGY [J]

Energy stored in a magnetic field [Joules].
Wi = energy stored in a magnetic
field [J]
W._ = i dgzdv' My = permeability constant
" 2m, 4px10” [H/m]
B = magnetic field [T]

L INDUCTANCE [H]

Inductance is the ability of a conductor configuration
to "link magnetic flux", i.e. store magnetic energy.
Two methods of calculating inductance are given
below.

L= L L = flux linkage [Wh]
| | = current [A]
AN Wi = energy stored in a magnetic field
L="m
2 [J]

FARADAY'S LAW

When the magnetic flux enclosed by a loop of wire
changes with time, a current is produced in the loop.
The variation of the magnetic flux can result from a
time-varying magnetic field, a coil in motion, or both.

N E=- 1B NxE = the curl of the electric field
- ﬁ B = magnetic field vector [T]
Another way of expressing Faraday's law is that a
changing magnetic field induces an electric field.
. | d . where Sis the surface
Via =@ E-dl =- a QBds gr?closed by contour
(see also Induced Voltage below)
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Vina INDUCED VOLTAGE

The voltage induced in a coil due to a changing
magnetic field is equal to the number of turns in the
coil times the rate at which the magnetic field is
changing (could be a change in field strength or coll
area normal to the field).
dy N = number of turns of the coil
Via =-N gt Y = the magnetic flux produced by
. a single turn of the coil [Wh]
Vind = @Edl

Vina INDUCED VOLTAGE DUE TO
MOTION

When conductors move in the presence of magnetic
fields, an induced voltage is produced even if the
magnetic fields do not vary in time. For the voltage
produced due to both a changing magnetic field and a
conductor in motion:

__ 1B < (o
\/ind —-Qﬁ-dS+Q(V B)dl

B = magnetic field vector [T]

Vv = velocity vector of the conductor [m/s)]

ds = increment of the surface normal to the magnetic field
vector [mz]

dl = incremental length of conductor [m]

M MAGNETIZATION [A/m]

The induced magnetic dipole moment per unit
volume.
NanZB N = number of turns of the coil
e

M = e = electron charge -
4m, 1.602x10™ C
c B a = orbit radius of an electron [m]
or M =—= B = magnetic field vector [T]
m m = permeability constant 4px10~
where [H/m]
Nqéazn*b M = who knows?
Chn=- T Cm = magnetic susceptibility

INDUCED VOLTAGE — SLIDER PROBLEM

A frictionless conducting bar moves to the right at
velocity v produces a current I.

An expanding magnetic field area having a static
magnetic field directed into the page produces a
CCW current.
Ving = induced voltage [V]
By = static magnetic field [T]
h = distance between the conductor rails
[T]
Vind = BOhV v = velocity of the conductor [m/9)]
Fmag = magnetic force opposing slider
[N]

Fmag - XBOI h X = unit vector in the direction against
2 d conductor movement [M/9)]
E=I Rv | = current [A]

E = energy produced [J or W/g]

R = circuit resistance [W|

d = distance the conductor moves
[m]
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