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As specified under the MHD approximation for Earth’s dynamo, Ampere’s law in combina-
tion with Ohm’s law is inverted, without additional approximations or assumptions, to yield

an analytic expression for the Earth’s core-fluid velocity solely in terms of  the magnetic induc-
tion. This velocity can be loosely characterized as being derived from forces associated with
magnetic pressure and stress or tension along the magnetic field lines. Inserting this analytic
expression for the fluid velocity into the usual magnetic induction equation, derived under the
MHD approximation appropriate for Earth’s dynamo, effectively decouples the magnetic induc-
tion from the fluid velocity, thereby yielding an inhomogeneous magnetic-diffusion equation
involving only the magnetic induction. The source term in this decoupled equation has a self-
regulating factor proportional to the inverse square of the total intensity. So, as the total inten-
sity becomes large, the source term becomes small and the homogeneous diffusion equation
is approached, whereby, the field decays. As the total intensity decreases, the source term then
increases and the induction field grows. This self modulating effect, therefore, tends to main-
tain the field magnitude within some bounds while the polarity is free to reverse or not as other
source-term elements dictate. The main consequence of this decoupling is that further analy-
sis of the dynamo problem can proceed as if dealing with a kinematic dynamo, with the impor-
tant distinction that the fluid velocity is not arbitrarily specified, but follows directly from
Maxwell’s equations and Ohm’s law. For this reason, the resulting class of dynamo is highly
restrictive, but potentially fundamental to the geodynamo problem.

in the induction equation without further assumptions
or approximations has hitherto not been realized. 

Kinematic dynamo theory, as discussed for instance by
Roberts and Gubbins (1987), decouples the fluid
velocity from the magnetic induction by specifying a
priori, an arbitrary velocity field, which then allows the
induction equation to be solved for the magnetic
induction field given some initial conditions and
boundary conditions. The object of this approach is to
determine if the specified velocity field can sustain
dynamo action and thereby exhibit magnetic reversals.
However, even if dynamo action is sustained, there is

Introduction

Maxwell’s equations and Ohm’s law as specified for
the geodynamo problem, can, in a well known manner
(e.g., Merrill and McElhinny [1983]) employing the
usual Magneto-Hydro-Dynamic (MHD) approxima-
tion, be combined in such a way as to eliminate the
electric field to yield the familiar magnetic induction
equation. This equation may be characterized as an
inhomogeneous magnetic diffusion equation with a
source term involving the cross product v×B, where v
is the fluid velocity in the core and B is the magnetic
induction field. Formally decoupling these parameters



no reason to suppose that an arbitrarily chosen veloci-
ty field is in any way representative of the true veloci-
ty field in the Earth’s core. Some additional constraints
are needed.

A reexamination of Maxwell’s equations for the geo-
dynamo leads to a new constraint which eliminates the
need to choose the velocity field arbitrarily. This con-
straint is in essence an analytic expression for the
velocity field which depends exclusively on the mag-
netic induction field. It consists of  a complicated set of
terms loosely corresponding to velocities generated by
magnetic pressure and stress or tension along the mag-
netic field lines. Inserting this velocity into the mag-
netic induction equation yields a nonlinear
inhomogeneous magnetic-diffusion equation that is
dependent only on the magnetic induction field. The
magnetic induction equation is thus, without arbitrary
assumptions, formally decoupled from the fluid veloc-
ity. Once the magnetic induction field is determined
from the diffusion equation, the velocity field, the elec-
tric field, and the electric current in the core are deter-
mined as well.

The Decoupling Procedure
Under the usual MHD approximation, Maxwell’s elec-
tromagnetic field equations for the geodynamo prob-
lem expressed in Gaussian units are as follows:

where the current density J in terms of the core-fluid’s
conductivity s and velocity v is given by Ohm’s law as:

The magnetic induction equation for the dynamo is
generated by taking the curl of eq. (1a) and using eqs.
(1b), (1d), and (2). As an aside, a similar equation for
the electric field can be generated by taking the curl of
eq. (1b) and using eqs. (1a), (1c), and (2). The follow-
ing  familiar induction equations result:

where the magnetic diffusivity η is defined as:

Now combining eq. (1a), Ampere’s law, with eq. (2),
Ohm’s law, and recasting the result into tensor compo-
nent form yields:

where the Latin indices i, j, and k range from 1 to 3
corresponding to the three coordinates x, y, and z
respectively; where Einstein summation notation is
assumed, whereby repeated pairs of indices (one
raised and one lowered) are to be summed over; and
where the Levi-Civita symbol has been introduced,
which yields: the value of 1 if its three indices are even
cyclic permutations of the numbers 1, 2, and 3 (e.g.,
312); the value of -1 if its three indices are odd per-
mutations of these numbers (e.g., 213);  and the value
of zero if any two indices are equal. The slash symbol
(/) denotes partial differentiation with respect to the
indicated coordinate index (e.g.,

The components of the velocity v can be isolated by
first noting the Levi-Civita identity:

so that:
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Inserting eq. (7) into eq.(5) and rearranging terms
slightly, yields the following result:

Clearly, eq. (8) is satisfied for each value of k, if:

There may be other ways of satisfying eq. (8). So, eq.
(9) is not necessarily unique, although it seems to be
the most natural solution, and one that has interesting
consequences.

Multiplying through by Bj and noting that:

eq. (9) can be solved for the velocity components,
yielding:

Reverting back to vector notation, this equation can be
written as:

The first term on the right-hand side can be identified
as a velocity induced by magnetic pressure. The sec-
ond term is an E × B drift velocity.

Now, eq. (5) can be written in vector form as:

Inserting eq. (13) into eq. (12) then yields the follow-
ing transcendental velocity equation:

This is a transcendental equation for the fluid velocity
solely in terms of the magnetic induction field. By
inserting the following vector identities into eq. (14):

an alternative form of the transcendental velocity equa-
tion results:

By taking the vector dot product of this equation with
the magnetic induction field B, solving for the dot
product (B • v), and inserting the result into the last
term in eq. (16), the fluid velocity can be expressed
entirely in terms of the magnetic induction field, as fol-
lows:

Inserting  this result  into eq. (13) and noting that
B × B is zero, so  that  the  entire last  term of eq. (17)
does not contribute, the electric field becomes

Similarly, inserting eq. (17) into eq. (3a), the magnetic
induction equation, the following inhomogeneous
magnetic-diffusion equation, which depends solely on
the magnetic induction field B, results:

Equations (17), (18), and (19) are the main results. It is
clear that there has been a complete decoupling of  the
fluid velocity from the magnetic induction field in the
magnetic induction equation. This is a pleasant simpli-
fication. However, eq. (19) is still formidable. The pre-
scription is to solve eq. (19) for the magnetic induction
field and insert the result into eqs. (17) and (18) to
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obtain the fluid velocity and electric field in Earth’s
core. Evaluating eqs. (17) and (18) given the magnetic
induction field from eq. (19), though straight forward,
is nevertheless nontrivial. The source term in eq. (19)
appears to be a complicated function of magnetic pres-
sure and magnetic stress or tension along the field
lines. Note further that the divergence of the velocity in
eq. (17) is not zero in general. So, the fluid incom-
pressibility condition often imposed in dynamo theory
is not satisfied.   

Conclusion
Other than the usual MHD approximation, no addi-
tional approximations were used in the derivation of
the decoupled magnetic-induction (diffusion) equa-
tion. Intuitively this equation is expected to exhibit
dynamo action. Since the only means of altering this
equation is through the magnetic diffusivity, it stands
as a highly restrictive dynamo equation which is poten-
tially fundamental to the dynamo problem. In support
of the view that eq. (19) will lead to a viable dynamo,
it can be noted that the velocity in eq. (17) is invariant
with respect  to a change in the sign of  the magnetic
induction. Likewise, eq. (19) is also invariant with
respect to such a change in sign. The electric field
reverses in response to magnetic field reversals. So,
both B and -B are acceptable solutions. Further-more,
note that the source term on the right-hand side of eq.

(19) has a factor that is inversely proportional to the
square of the total intensity. This factor appears to
serve as a self-regulating mechanism for the dynamo.
That is, as the field intensity grows, the source term
tends to zero yielding a homogeneous diffusion equa-
tion, for which the field will decay. Then, as the field
intensity becomes small, the source term increases,
causing the field to grow. Thereby, the magnetic field
intensity is constrained to remain within some bounds.
Meanwhile, the polarity of  the magnetic induction
field is free to reverse or not, depending on the value of
other elements in the source term, and their derivatives.
Thus, in view of the complicated nonlinear nature of
the source term in the magnetic diffusion equation,
which seems sufficiently robust to admit reversals, the
diffusion equation appears to posses the necessary
ingredients to generate self-exciting dynamo action.
However, this proposition still needs computational
verification.
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